红外滤光片截止波段等效发射率反演方法

刘俊池,李洪文*,殷丽梅,李宏壮

中国科学院长春光学精密机械与物理研究所, 吉林 长春 130039

摘要 为了实现对红外滤光片辐射特性的量化分析,研究了一种红外滤光片截止波段等效发射率反演方法,并建 立了反演方法的基本数学模型。在有、无红外滤光片的情况下,分别对红外成像系统进行辐射定标,并基于定标结 果计算红外滤光片截止波段的自身辐射;基于极坐标系下的有限面源至微面源辐射模型,反演红外滤光片截止波 段的等效发射率。根据基本数学模型开展了反演实验,在积分时间为 0.8 ms 与 4.0 ms 两种实验条件下对中波红 外滤光片进行反演,取两次实验结果的算术平均值(0.420)为等效发射率反演结果,则其等效反射率约为 0.580;两 次实验结果的相对差异较小,约为1.9%。开展了中波红外滤光片的反射成像实验,证明了其在截止波段具备较强的 反射辐射特性,定性地验证了反演实验的结果。

关键词 大气光学;红外滤光片;发射率;辐射定标;辐射特性 中图分类号 TP751.1 **文献标识码** A

doi: 10.3788/AOS201838.0401002

Equivalent Emissivity Inversion Method for Infrared Filters in Cutoff Band

Liu Junchi, Li Hongwen, Yin Limei, Li Hongzhuang

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130039, China

Abstract In order to achieve the quantitative analysis of infrared filters' radiation characteristics, we propose an equivalent emissivity inversion method for infrared filters in the cutoff band and establish the basic mathematical model of the inversion method. Firstly, in two cases, whether placing the infrared filter in the light path or not, we conduct the radiometric calibration for infrared imaging system and then calculate the self-radiation which is caused by infrared filter in the cutoff band based on the calibration results. Secondly, based on the mathematical model of radiation from the limited surface source to the micro surface source in polar coordinates, we inverse the equivalent emissivity of the infrared filter in the cutoff band. According to the basic mathematical model, we carry out an inversion experiment of a mid-wave infrared (MWIR) filter, in two cases that the integration times are set to 0.8 ms and 4.0 ms. The result of the equivalent emissivity, arithmetic average of inversion values obtained in the two cases, is approximately equal to 0.420, so that the equivalent reflectance is approximately equal to 0.580. The relative difference value of the two experiment cases is small, approximately equal to 1.9%. We conduct the reflection imaging experiment of the MWIR filter. It is proved that the MWIR filter has strong reflective ability of radiation in the cutoff band. What's more, the conclusion of the inversion experiment is verified qualitatively by the phenomena of the reflection imaging experiment.

Key words atmospheric optics; infrared filter; emissivity; radiometric calibration; radiation characteristics OCIS codes 010.1320; 010.5630; 040.3060

1引言

在有特定探测波段要求的红外成像系统的设计 中,普遍应用红外滤光片实现探测波段的选择。红 外滤光片能有效透过指定波段内的红外辐射,并且 可有效抑制指定波段外的红外辐射。目前,红外滤 光片被广泛应用于热成像探测的各个相关领域。红 外探测器组件和多波段红外热像仪等典型的红外光

收稿日期: 2017-09-28; 收到修改稿日期: 2017-10-16

基金项目:国家高技术研究发展计划(2016AAXXX1003X)

作者简介:刘俊池(1988-),男,博士,助理研究员,主要从事红外辐射特性测量及图像处理等方面的研究。

^{*} 通信联系人。E-mail: lihongwen@ciomp.ac.cn

电设备均集成了红外滤光片。

然而,红外滤光片的应用存在着一定的不确定 性。在透过波段,红外滤光片对红外辐射具有高透 过率,其发射率与反射率之和必定接近于0:在截止 波段,红外滤光片对红外辐射具有低透过率,其发射 率与反射率之和也必定接近于1。在透过波段,红 外滤光片基本不具备自身辐射与反射辐射的特性; 而在截止波段,情况恰好相反。在实际应用中,红外 滤光片的部分截止波段包含于红外探测器的响应波 段,则对于成像系统而言,红外滤光片在截止波段的 自身辐射或反射辐射属于杂散辐射。在系统设计阶 段,特别是对于有暗弱目标探测需求的红外系统,必 须对红外滤光片的杂散辐射进行量化分析;开展量 化分析的前提是掌握红外滤光片截止波段的发射率 和反射率。目前,关于红外滤光片截止波段辐射特 性的研究较少。为此,研究了一种简单、有效的红外 滤光片截止波段等效发射率反演方法,该方法首先 测定红外滤光片的杂散辐射,之后反演获得其截止波 段的等效发射率,即获得其截止波段的等效反射率。

杂散辐射是指红外探测器接收到的非目标辐射 或非成像辐射。获知杂散辐射的方法主要有 2 种: 1)在待分析元件表面特性(即双向反射分布函数)已 知的情况下,一般采用光线追迹法和蒙特卡罗法等 方法,将特定数值的辐射能量抽象为光线,对其在光 路中的走向进行追迹分析。前述过程可以基于 Matlab数据处理平台进行仿真分析,也可以利用成熟 的照明分析软件,如 Tracepro、ASAP 和 LightTool 等^[1-5];2)在待分析元件表面特性未知的情况下,可 以通过实验方法对杂散辐射进行有效测量。典型的 方法,如常松涛等^[6]研究的制冷型红外成像系统内 部杂散辐射测量方法,基于不带镜头与带镜头的对 比辐射定标结果,计算获得系统内部杂散辐射。本 文的应用背景属于后者,在一定程度上参考了相关 研究的实验思路^[6-10]。

2 基本数学模型

所提方法有两个关键环节,即红外滤光片截止 波段自身辐射测定和红外滤光片截止波段等效发射 率反演。本节将分别讨论这两个关键环节的数学 模型。

2.1 红外滤光片截止波段自身辐射测定

对红外成像系统进行辐射定标,若黑体位于 光学系统的物面处,则辐射定标的数学模型表达 式为^[11-16]

$$D_{\rm N} = k \eta \tau_{\rm opt} \int_{\lambda_{\rm bd}}^{\lambda_{\rm pd}} R(\lambda) L_{\rm bb}(\lambda) d\lambda + b_{\rm 1}, \qquad (1)$$

$$b_{1} = k \eta \tau_{\rm opt} \int_{\lambda_{\rm bd}}^{\lambda_{\rm pd}} R(\lambda) L_{\rm stray}(\lambda) d\lambda + k \eta \tau_{\rm opt} \int_{\lambda_{\rm bd}}^{\lambda_{\rm pd}} R(\lambda) L_{\rm opt}(\lambda) d\lambda + D_{\rm N \, bias}, \quad (2)$$

$$\eta = \frac{\pi A_{\text{det}}}{4F^2},\tag{3}$$

式中 D_N 为红外探测器单个像元的响应灰度值;k为 红外探测器单个像元的辐射响应度:λ为探测波长: λ_{nd} , λ_{bd} 分别为探测器响应波段的波长上、下限; η 为 换算系数; $\tau_{\rm out}$ 为光学系统透过率; $R(\lambda)$ 为红外探测 器单个像元的归一化光谱辐射响应度;*L*_{bb}(λ)为黑 体光谱辐射亮度;L_{stray}(λ)为视场外杂散辐射换算 至光学系统物面处的等效辐射亮度,换算过程不 仅要考虑几何成像关系,而且要考虑各光学元件 的辐射传递衰减,此后提及的等效辐射亮度均通 过此原理换算获得; $L_{out}(\lambda)$ 为光学系统(透镜组) 辐射换算至光学系统物面处的等效辐射亮度;b1为 红外探测器单个像元的灰度偏置值;D_{Nbias}为红外 探测器读出电路偏置电压引起的灰度值;Add 为红 外探测器单个像元的面积:F为光学系统的焦距与 入射光瞳直径的比值。系统辐射定标的光路示意图 如图1所示。

将红外滤光片置于镜头组与红外探测器之间, 并且使红外滤光片表面与红外探测器封装杜瓦窗口 表面的间距尽量小,对系统进行辐射定标,光路示意 图如图 2 所示。

有红外滤光片的辐射定标数学模型表达式为

$$D_{\rm N} = k \eta \tau_{\rm opt} \int_{\lambda_{\rm bf}}^{\lambda_{\rm pf}} R(\lambda) L_{\rm bb}(\lambda) d\lambda + b_2, \qquad (4)$$

$$b_2 = k \eta \tau_{\rm opt} \tau_{\rm filter} \int_{\lambda_{\rm bf}}^{\lambda_{\rm pf}} R(\lambda) L_{\rm stray}(\lambda) d\lambda + k \eta \tau_{\rm opt} \tau_{\rm filter} \int_{\lambda_{\rm bf}}^{\lambda_{\rm pf}} R(\lambda) L_{\rm opt}(\lambda) d\lambda + k \eta \tau_{\rm opt} \tau_{\rm filter} \int_{\lambda_{\rm bf}}^{\lambda_{\rm pf}} R(\lambda) L_{\rm filter}(\lambda) d\lambda + (5)$$

0401002-2

path with infrared filter

式中 λ_{pf} 、 λ_{bf} 分别为滤光片透过波段的波长上、下限; τ_{filter} 为滤光片透过波段对应的透过率。滤光片与红 外探测器封装杜瓦窗口表面的间距非常小,基本不 存在滤光片对视场外杂散辐射的反射影响,并且其 对(2)式中的 $L_{stray}(\lambda)$ 与 $L_{opt}(\lambda)$ 只存在透射衰减作 用; $L_{filter}(\lambda)$ 为滤光片辐射换算至光学系统物面处的 等效辐射亮度; b_2 为红外探测器单个像元的灰度偏 置值。(5)式与(2)式相减可得

$$b_{2} - b_{1} = k \eta \tau_{opt} \left[\tau_{filter} \int_{\lambda_{bf}}^{\lambda_{pf}} R(\lambda) L_{stray}(\lambda) d\lambda - \int_{\lambda_{bd}}^{\lambda_{pd}} R(\lambda) L_{stray}(\lambda) d\lambda \right] + k \eta \tau_{opt} \left[\tau_{filter} \int_{\lambda_{bf}}^{\lambda_{pf}} R(\lambda) L_{opt}(\lambda) d\lambda - \int_{\lambda_{bd}}^{\lambda_{pd}} R(\lambda) L_{opt}(\lambda) d\lambda \right] + k \eta \tau_{opt} \tau_{filter} \int_{\lambda_{bf}}^{\lambda_{pf}} R(\lambda) L_{filter}(\lambda) d\lambda \,. \tag{6}$$

两种辐射定标情况下的灰度偏置值的差值如 (6)式所示。以制冷型红外探测器为成像终端的透 射式光学系统,探测器封装杜瓦内置的冷光阑,能够 有效抑制视场外杂散辐射,加之实验环境中不存在 强烈高温热源,因此 L_{stray}(λ)的数值极小;光学系统 中的透镜在红外探测器响应波段内均处于高透过率 状态,对应的发射率数值极低,因此 L_{opt}(λ)的数值 极小。忽略 L_{stray}(λ)与 L_{opt}(λ)的影响,可得

$$b_{2} - b_{1} = k \eta \tau_{opt} \tau_{filter} \int_{\lambda_{bf}}^{\lambda_{pf}} R(\lambda) L_{filter}(\lambda) d\lambda \,. \tag{7}$$

由(7)式可知, b₂与 b₁的差值是红外滤光片自 身辐射的响应灰度值。由于红外滤光片在透过波段 几乎没有自身辐射,因此 b₂与 b₁的差值是红外滤光 片在截止波段的自身辐射的响应灰度值。红外滤光 片截止波段自身辐射测定原理示意图如图 3 所示。

2.2 红外滤光片截止波段等效发射率反演

在图 2 所示的光路中,红外滤光片自身辐射未 经过镜头组而直接入射至红外探测器的焦平面,因 此可以将辐射模型抽象为有限面源至微面源的辐射

图 3 红外滤光片截止波段自身辐射测定原理示意图 Fig. 3 Schematic of self radiation determination principle for infrared filter in cutoff band

模型^[17]。假定红外探测器的焦平面为有限面源 A_1 ,红外探测器的单个像元为微面源 dA₁,红外滤 光片为有限面源 A_2 , A_1 与 A_2 的几何中心连线分别 与 A_1 , A_2 面垂直。建立以 A_2 为 xOy平面的三维直 角坐标系,空间几何关系如图 4 所示。

根据有限面源至微面源的辐射模型可得

$$\Phi_{A_2-dA_1} = k_{t} \varepsilon_{\text{filter}} L_{t}, \qquad (8)$$

$$a_1^2 \int_{-a_0/2-\Delta y}^{a_2/2-\Delta y} \int_{-a_0/2-\Delta x}^{a_2/2-\Delta x} s^2 (s^2 + x^2 + y^2)^{-2} dx dy,$$

式中 $\Phi_{A_2-dA_1}$ 为 A_2 至 d A_1 的辐射通量, ε_{filter} 为红外 滤光片在截止波段的等效发射率, L_1 为 A_2 的辐射亮 度, a_1 为 d A_1 的单侧边长, a_2 为 A_2 的单侧边长,s为 A_2 至 d A_1 的距离,x与y为 d A_2 中心在直角坐标系 中的xOy平面位置坐标, Δx 与 Δy 为 d A_1 中心在直 角坐标系中的xOy平面位置坐标。

考虑到红外探测器冷光阑的开口为正圆形,因 此在极坐标系下进行计算相对方便,则(9)式所述辐 射关系可以转换为

 $k_{t} =$

)

$$k_{\tau} = a_{1}^{2} s^{2} \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{R_{\text{filter}}} \rho [s^{2} + (\rho \cos \theta - \Delta x)^{2} + (\rho \sin \theta - \Delta y)^{2}]^{-2} \mathrm{d}\rho, \qquad (10)$$

式中 R_{filter}为红外滤光片的有效口径,由探测器中心 位置与冷光阑开口投影计算获得^[18-19];ρ、θ为极坐 标系下的位置变量。红外滤光片截止波段等效发射 率为

$$\varepsilon_{\text{filter}} = \frac{\Phi_{A_2 - dA_1}}{k_1 L_1} = \frac{(b_2 - b_1)/k_1}{k_1 L_1} \,. \tag{11}$$

3 实验验证

基于前述数学模型与实验方法,开展了红外滤光 片截止波段等效发射率反演实验和反射成像实验。

3.1 反演实验

选用中波红外滤光片,实验相关参数如表1所示。

表1 实验相关参数

Table 1 Parameters of experiment

Parameter	Value
Response band of detector $/\mu m$	3.6-5.0
Resolution of detector /pixel $ imes$ pixel	320 imes 256
Pixel size of detector $/\mu m$	30
F number of cold stop	2
Integration time /ms	0.8, 4.0
Transmission band of filter $/\mu m$	3.6-4.2
Distance from filter to window /mm	10
Distance from window to FPA $/\mathrm{mm}$	23.75
Temperature of filter /°C	23
Emissivity of black body	0.95

中波红外探测器的归一化光谱辐射响应度如 图 5 所示。

为 26,29,32,35,38,41,44,47,50 °C。无红外滤光 片的辐射定标结果如图 6 所示,有红外滤光片的辐 射定标结果如图 7 所示。值得注意的是,此后 图 6~11 中的非色坐标轴构成的平面直接对应红外 探测器焦平面的 x,y方向,量纲为像素;色坐标轴 视标注情况分别表征辐射响应度、灰度偏置值、辐 射响应度相对差异以及灰度偏置值绝对差异,辐 射响应度量纲为任意量纲,描述灰度数值与照度单 位 W⁻¹·m²的对应关系,灰度偏置值量纲为任意量 纲,辐射响应度相对差异无量纲,灰度偏置值绝对差 异量纲为任意量纲。

图 6 无红外滤光片的辐射定标结果(积分时间为 0.8 ms)。 (a)辐射响应度;(b)灰度偏置值

计算辐射响应度的相对差异与灰度偏置值的 绝对差异,结果如图 8 所示。不考虑红外探测器 盲元影响,两次定标实验辐射响应度的相对差异 很小,均值约为 2%,这不仅验证了第 2.1 节的结 论,也从侧面验证了实验方法的合理性;灰度偏置 值的绝对差异的均值约为 378D_N,根据第 2.1 节的 结论,此数值即为中波红外滤光片截止波段自身 辐射的响应灰度值。

根据第 2.2 节所述的数学模型,中波红外滤光 片截止波段等效发射率的计算结果约为 0.416(此结

图 7 有红外滤光片的辐射定标结果(积分时间为 0.8 ms)。 (a)辐射响应度;(b)灰度偏置值

Fig. 7 Radiation calibration results with infrared filter (integration time is 0.8 ms). (a) Radiation responsivity; (b) gray value bias Relative difference of radiation

图 9 无红外滤光片的辐射定标结果(积分时间为 4.0 ms)。 (a)辐射响应度;(b)灰度偏置值

果为红外探测器各像元对应计算结果的算术平均 值,去除盲元)。

2) 红外探测器的积分时间设定为 4.0 ms

在辐射定标过程中,定标黑体的温度依次设定为26,28,31,34,37,40,41 ℃。无红外滤光片的辐射定标结果如图 9 所示,有红外滤光片的辐射定标结果如图 10 所示。

计算辐射响应度的相对差异与灰度偏置值的绝 对差异,结果如图 11 所示。不考虑红外探测器盲元 影响,两次定标实验辐射响应度的相对差异的均值 约为 2%,与积分时间为 0.8 ms 的实验结果大致相 同;灰度偏置值的绝对差异的均值约为 1909 D_N ,大 概是积分时间为 0.8 ms 的实验结果的 5 倍,与两者 积分时间的比例关系相当,进一步验证了实验方法 的合理性。

radiation responsivity; (b) absolute difference of gray value bias

根据第 2.2 节所述的数学模型,中波红外滤光 片截止波段等效发射率的计算结果约为 0.424(此结 果为红外探测器各像元对应计算结果的算术平均 值,去除盲元)。通过对比发现,两次计算结果的差 异较小,相对差异约为 1.9%。取两次计算结果的算 术平均值(0.420)为最终反演结果,则截止波段的等 效反射率约为 0.580。

3.2 反射成像实验

从第 3.1 节的实验结果不难发现,中波红外滤 光片在截止波段既具备自身辐射特性,也具备反射 辐射特性。其中,自身辐射特性已经在实验中得到 证明,为了验证其反射辐射特性,开展了中波红外滤 光片的反射成像实验。

红外滤光片与光轴的夹角为 45°,系统对红外 靶标成像,靶标置于面源黑体前,光路示意图如 图 12 所示,反射成像效果如图 13 所示。

(红外滤光片与光轴的夹角为 45°)

Fig. 12 Diagram of reflection imaging light path (angle between infrared filter and optical axis is 45°)

红外滤光片与光轴垂直,系统分别对后向光路 的透镜表面、红外探测器封装杜瓦窗口进行成像,光 路示意图如图 14 所示,反射成像效果如图 15 所示。

图 14 反射成像的光路示意图(红外滤光片与光轴垂直) Fig. 14 Diagram of reflection imaging light path (filter is perpendicular to optical axis)

从图 13 与图 15 所示的反射成像效果可以看出,中波红外滤光片在截止波段具备较强的反射

图 15 反射成像效果(红外滤光片与光轴垂直)。 (a)透镜表面;(b)杜瓦窗口

Fig. 15 Reflection imaging effect (filter is perpendicular to optical axis). (a) Lens surface; (b) Dewar window

辐射特性,实验现象定性地验证了第 3.1 节的实验 结果。

4 结 论

提出了一种红外滤光片截止波段等效发射率的 反演方法,首先测定了红外滤光片的自身辐射,然后 反演其截止波段的等效发射率。通过反演实验可 得:中波红外滤光片的截止波段等效发射率约为 0.42,截止波段等效反射率约为 0.58。反射成像实 验证明了中波红外滤光片具备较强的反射辐射特 性,实验现象定性地验证了反演实验结果的合理性。 基于前述的中波红外滤光片反演结果,开展了某红 外成像系统的杂散辐射仿真分析工作,并进一步开 展了系统的探测能力仿真分析工作,仿真分析结果 与系统最终实测结果的相对误差约为 10%,吻合度 较高,证明了所述方法的可靠性。

参考文献

 Li Y, Liu J F. Research on integrative suppression of internal and external stray light in infrared optical remote sensor[J]. Acta Optica Sinica, 2013, 33(9): 0928002.

李岩,刘剑锋. 红外光学遥感器内杂散光和外杂散光的综合抑制研究 [J]. 光学学报, 2013, 33 (9): 0928002.

- [2] Akram M N. Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3-5 μm waveband[J]. Applied Optics, 2010, 49(6): 964-975.
- [3] Zhu Y, Zhang X, Liu T, et al. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing[J]. Infrared Physics & Technology, 2015, 71: 163-170.
- [4] Xia X L, Shuai Y, Tan H P. Calculation techniques with the Monte Carlo method in stray radiation evaluation[J]. Journal of Quantitative Spectroscopy

and Radiative Transfer, 2005, 95(1): 101-111.

- [5] Fest E. Stray light analysis and control[M]. Bellingham: Society of Photo-optical Instrumentation Engineers Press, 2013: 41-59.
- [6] Chang S T, Sun Z Y, Zhang Y Y, et al. Internal stray radiation measurement for cooled infrared imaging systems[J]. Acta Physica Sinica, 2015, 64(5): 050702.
 常松涛,孙志远,张尧禹,等.制冷型红外成像系统内部杂散辐射测量方法[J].物理学报, 2015, 64(5): 050702.
- [7] Tian Q J, Chang S T, He F Y, et al. Internal stray radiation measurement for cooled infrared imaging systems using ambient temperature[J]. Acta Optica Sinica, 2017, 37(7): 0712002.
 田棋杰,常松涛,何锋赟,等.根据环境温度测量制 冷型红外成像系统内部杂散辐射[J].光学学报, 2017, 37(7): 0712002.
- [8] Tian Q J, Chang S T, He F Y, et al. Spherical warm shield design for infrared imaging systems[J]. Infrared Physics & Technology, 2017, 85: 66-73.
- [9] Tian Q J, Chang S T, Li Z, et al. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures[J]. Infrared Physics & Technology, 2016, 81: 1-6.
- [10] Tian Q J, Chang S T, He F Y, et al. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror[J]. Applied Optics, 2017, 56(17): 4918-4925.
- [11] Liu J C, Li H W, Wang J L, et al. Inversion of emissivity spectrum and temperature in the TIR waveband based on the Maximum Entropy[J]. Infrared Physics & Technology, 2015, 72: 179-190.
- [12] Liu J C, Li H W, Wang J L, et al. Fast radiance calibration for ground-based large-aperture infrared opto-electric equipment[J]. Acta Optica Sinica, 2015, 35(3): 0301003.
 刘俊池,李洪文,王建立,等.地基大口径红外光电设备快速辐射定标[J].光学学报, 2015, 35(3): 0301003.
- [13] Liu J C, Li H W, Wang J L, et al. Measurement of mid-infrared total atmospheric transmittance and its error analysis[J]. Optics and Precision Engineering, 2015, 23(6): 1547-1557.
 刘俊池,李洪文,王建立,等.中波红外整层大气透过率测量及误差分析[J].光学精密工程, 2015, 23(6): 1547-1557.
- [14] Yu Y, Chang S T, Wang M, et al. Fast non-uniformity correction for high dynamic infrared radiometric system[J]. Optics and Precision Engineering, 2015, 23(7): 1932-1938.
 余毅,常松涛,王旻,等.宽动态范围红外测量系统

的快速非均匀性校正[J]. 光学 精密工程, 2015, 23(7): 1932-1938.

[15] Guo L H, Guo H Z, Yang C Y, et al. Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients[J]. Optics and Precision Engineering, 2016, 24(8): 1871-1877.
郭立红,郭汉洲,杨词银,等.利用大气修正因子提 高目标红外辐射特性测量精度[J].光学精密工程, 2016, 24(8): 1871-1877.

[16] Zhang J M, Feng G B, Yang P L, et al. Thermal issues of photoconductive HgCdTe detector in mid-infrared laser parameter measurement[J]. Optics and Precision Engineering, 2015, 23(1): 22-30.
张检民,冯国斌,杨鹏翎,等. 碲镉汞光导探测器在中红外激光测量中的热问题[J].光学精密工程, 2015, 23(1): 22-30.

- [17] Siegel R, Howell J R. Thermal radiation heat transfer[M]. New York: Hemisphere Publishing, 1992: 65-71.
- [18] Peng Z Y, Wang X J, Lu J. Method of imaging performance deterioration analysis and its experiment simulated high heating sapphire MW infrared window during near-hypersonic flight[J]. Acta Physica Sinica, 2013, 62(23): 230702.
 彭志勇, 王向军, 卢进. 近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验[J]. 物理学报, 2013, 62(23): 230702.
- [19] Jin N, Yang K Y, Cao L, et al. Optimization design for the shapes of cold shield in infrared systems[J]. Acta Optica Sinica, 2016, 36(1): 0111005.
 金宁,杨开宇,曹凌,等. 红外系统冷屏形状的优化 设计[J].光学学报, 2016, 36(1): 0111005.